Results

Conclusions and Future Work

GPU Accelerated Face Recognition With Eigenfaces

Baruffaldi Juan Manuel

Pellejero Nicolás pellejero.nicolas@gmail.com

Facultad de Ciencias Exactas e Ingeniería Universidad Nacional de Rosario

18 de Septiembre 2013

FCEIA

Introduction PCA Experimental Setup	Results	Conclusions and Future Work
00		

Overview

- Introduction
 PCA
 - PCA
 - Average Image
 - Covariance Matrix
 - Calculating Eigen Pairs
 - Projection process
- 3 Experimental Setup
- 4 Results
- 5 Conclusions and Future Work

Introduction	PCA 0 0 0 00	Experimental Setup	Conclusions and Future Work

- We present a GPU implementation of the Eigenfaces approach to the problem of Face Recognition.
- This method uses PCA as a process to extract the most relevant information about Faces Images.
- The goal is to optimize the algorithm to run on the SIMD architecture of the GPU.
- Several Tests were made, varying the amount of training pictures, to analyze the scalability of the implementation.

Introduction	PCA	Experimental Setup	Conclusions and Future Work
	00		

Eigenface Approach

- Training Process
 - Find Eigenspace.
 - Project training samples.
- Recognition Process
 - Project test image into the Eigenspace.
 - Find the distance between this projected image and all the others.
 - Compute the minimum of the distances.

In this work, we focused on the most computationally expensive step of the approach: The Training Process.

イロト イポト イヨト イヨト

PCA	Experimental Setup	Conclusions and Future Work
ŏ		
00		

	PCA ● ○ ○ ○	Experimental Setup	Conclusions and Future Work
Average Image			

• Thread n-th computes the average of the n-th column.

 Under this scheme, the calculation scales on the size of the images and not on the quantity.

æ

FCEIA

	PCA 0 0	Experimental Setup	Conclusions and Future Work
Covariance Matrix			

- The Covar Matrix is computed by C = AA^T where each row of A is θ_i = IMG_i - AVG
- N×N threads are launched where thread (i,j) computes the (i,j) th element of the covariance matrix.
- The Matrix-Matrix operation is done by blocks, and each block is stored in shared memory.
- To load data from global,to shared memory, the accesses are made in a transposed way, avoiding bank conflicts.

	PCA 0 0	Experimental Setup	Conclusions and Future Work
Calculating Eigen Pai	rs		

Still working ...

 Actually we are using the Rotation Jacobi method to calculate Eigenvalues and Eigenvectors of the covar matrix.

FCEIA

• The implementation is totally secuential.

э

FCFIA

- Block stored in shared memory.
- Memory acceses made in a traspose way.

	PCA ○ ○	Experimental Setup	Conclusions and Future Work
Projection process			

Number of Images	Subspace Size	% Reduced
200	139	30,5
400	286	28,5
1000	698	30,2
2000	1357	32,15
4820	2997	37,82

• The table shows the dimensionality reduction achieved with PCA.

2

イロト イロト イヨト イヨト

Introduction

We run our tests in a Fermi C2070 and a Kepler K20, both GPGPU of NVIDIA.

Conclusions and Future Work

Experimental Setup

- The secuential implementation of the algorithm was tested in a Intel Core i7 CPU 950 @ 3.07GHz.
 - The CPU times are based on single-core performances.
 - All the execution times were calculated with the time.h C Library.

< < >> < <</>

< ∃ >

FCEIA

 During the testing phase, we used Cuda Calculator to optimize the use of registers.

PCA	Experimental Setup	Results	Conclusions and Future Work
00			

FCEIA

PCA	Experimental Setup	Results	Conclusions and Future Work
00			

Comparation between Tesla K20 and Tesla C2070, in relation to the CPU

HPCDay

PCA 0 0 0 00	Experimental Setup	Conclusions and Future Work

Analyzing the nature of the problem, the operations required to solve it, and the results, we found that...

- The approach is very suitable to run on a many-core SIMD architecture.
 - There are few dependencies between data.
 - In general, there are no need to use Atomic Operations.
 - Good scalability.
- Finishing the implementation of the Eigen Pairs Calculation Process is the main future work.
- The plan is to do it through Householder Reflections, doing the Matrix-Matrix Operations per blocks.

イロト イポト イヨト 一日

Introduction

PCA o o Experimental Setup

Thank you very much for your atention!

Conclusions and Future Work

... Questions?

baruffaldi.jm@gmail.com pellejero.nicolas@gmail.com

Image: A math a math

- ∢ ⊒ →

FCEIA